

Applied machine learning

Unveil the unseen: uncover hidden information with machine learning

Dr Gareth Conduit

Introducing Alchemite[™] applied machine learning

Developed at University of Cambridge

Innovative method extracts value from Sparse, noisy data to solve complex, highdimensional problems

Key use cases: chemicals, materials, life sciences, and manufacturing

Focus on ease-of-deployment for immediate return on investment

Exploit property-property correlations to overcome sparse data for probabalistic design of concrete

Use case of machine learning to extract information from **noise** to design concrete

Applications of **generic** Alchemite[™] to **materials** design

Machine learning architecture that understands uncertainty

Bogdan Zviazhynski

Improved uncertainty predictions

$$R^2 - \frac{2\sqrt{2}}{\sqrt{1-2/\pi}}(1-R^2)\Lambda$$

 R^2 is coefficient of determination

 Λ is error in uncertainties

Focus on *R*² for accurate models, emphasis on uncertainties when accuracy falls

(prediction - value)/uncertainty

Exemplar information extracted from noise

Renormalization group theory applied to phase transitions 1982 Nobel Prize in Physics

Markowitz model 1990 Nobel Memorial Prize

Risk (standard deviation of return)

Handling uncertainty

Discover property-property correlations

Design robust formulations

Outlier detection

Design of experiments

Information from noise

Unveil the unseen: exploit information hidden in noise B. Zviazhynski & GJC Applied Intelligence **53**, 11966 (2023)

Nickel superalloys with Rolls Royce

Vadegadde Duggappa

Bryce Conduit

Professor Howard Stone

Combustor in a jet engine

Defects form during printing

Laser

Data available to model defect density

Requires 31 points to fit a hyperplane

Just 10 data entries available to model defect density

Ability for printing and welding are strongly correlated

Laser

First predict weldability

1000 entries

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations give composition → defects extrapolation

Target properties

< 25 \$kg⁻¹
< 8500 kgm⁻³
< 25 wt%
< 0.3 mgcm ⁻²
< 0.15% defects
> 99.0 wt%
> 1000°C
> 0.04 KΩ ⁻¹ m ⁻³
> 200 MPa
> 300 MPa
> 8%
> 100 MPa
> 10 ⁵ cycles

Probability of fulfiling each target

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm ⁻³		
γ' content	< 25 wt%	probability	
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³		
Yield stress at 900°C	> 200 MPa	D(motorial modal)	
Tensile strength at 900°C	> 300 MPa	P(material model)	
Tensile elongation at 700°C	> 8%	on et	property
1000hr stress rupture at 800°C	> 100 MPa	licti	
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles	Orec	

H

Composition and processing variables

Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

Test the defect density

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

Exploit uncertainty to design concrete

Jess Forsdyke

Bogdan Zviazhynski

Professor Janet Lees

Concrete in construction

Cement & aggregate

Cement & aggregate look like noise

Design a concrete that is **robust** and **environmentally friendly**

Design a concrete that is **robust** and **environmentally friendly**

Experimentally validate the concrete

Carbonation is the probe of noise

Depth and uncertainty in carbonation

F

Depth Uncertainty

Machine learning exploits uncertainty

Original model accuracy

Uncertainty improves the model accuracy

Ĵ

Concrete specification

Second mix

\$

✔ cost

✓ density

✓ strength

Phase behavior targets

Second mix

48.4% gravel

32.6% sand

8.5% water

First mix

14.2% cement

48.9% gravel

28.4% sand

8.5% water

Concrete manufacture

Probabilistic selection and design of concrete using machine learning Data-Centric Engineering **4**, e9 (2023)

Experimental validation of the proposed mixes

First mix

Second mix

Experiment Model

Target

Real-life use of Alchemite[™]

Johnson Matthey Technology Review **66**, 130 (2022)

JUU8637 X								
	Alloy	Source	ANN	Δ_{σ}	Actual			
	Steel AISI 301L	193	269	5	238[23]			
	Steel AISI 301	193	267	5	221[23]			
	Al1080 H18	51	124	5	120[23]			
	${ m Al}5083{ m wrought}$	117	191	14	300,190[4, 23]			
	${ m Al}5086{ m wrought}$	110	172	11	269,131[4, 23]			
	${ m Al}5454{ m wrought}$	102	149	14	124[23]			
	${ m Al}5456{ m wrought}$	130	201	11	165[23]			

223

278

10

Materials & Design **131**, 358 (2017) Scripta Materialia **146**, 82 (2018) Data Centric Engineering **3**, e30 (2022)

Computational Materials Science **147**, 176 (2018)

INCONEL600

 $\geq 550[23]$

GRANTA

Intellegens offers the Alchemite[™] product family

Scientists & engineers Fast start, easy-to-use, visual

▶ <u></u>

Optional

connectors

Lab systems

Software & scripts

Sharing & collaboration

Alchemite™ Analytics

Deep data insights on your desktop Guide experiments, predict, design, optimize

Alchemite[™] Engine

Integrate into your workflow (API, Python) Advanced configuration, enterprise deployment

Academia

Alchemite[™] academic licenses available for non-comercial research Alchemite[™] enables machine learning beyond data

Exploit property-property correlations to design alloy for 3D printing

Extract information from **NOISE** to design **CONCRETE**

Generic approach applied to many physical, chemical, and biological sciences

Webinar Design of Experiments made easy with machine learning, 8 May

OPTIMADE, API to access leading electronic structure databases